Conditional Algorithms

Lecture 4 - Sunday November 6, 2016

Outline

- Conditional Algorithms
- Logical Data Type
- Branching Constructs
- Exercises

Outline

- Conditional Algorithms

- Logical Data Type
- Branching Constructs
- Exercises

Conditional Algorithms

Conditional operation is a control operation that allow us to alter the normal sequential flow of control in an algorithm.

Conditional statements are the "questionasking" operations of an algorithm.

Start

set of algorithmic operations
Stop

Conditional Algorithms

Let's say you are going out tomorrow. You need to make a decision on what to wear depending on the weather forecast. If the weather is rainy, then you will want to wear your rain-coat. Otherwise, you will not bother. Therefore, your decision will be based on a certain condition

- Is the weather going to be rainy?
- If the answer is yes then, wear the raincoat.
- If the answer is no then no raincoat is needed.

Conditional Algorithms

We can express this situation, using the if-statement in the following manner:

Flow chart

Pseudo-code

```
if weather == 'rainy'
    display ('Wear rain coat ');
else
    display ('Do not wear rain coat');
end
```


Outline

- Conditional Algorithms
- Logical Data Type
- Branching Constructs
- Exercises

Logical Data Type

The logical data type is a special type of data that can have once of only two possible values: true or false.

To create a logical variable a1 containing the logical value true:
a1=true;
>>whos a1

Name	Size	Bytes	Class
a1	1×1	1	logical array

Logical Data Type

- Relational Operators

a1 op a2			
Operator	Operation	Operation	Result
$==$	Equal to	$3<4$	true (1)
$\sim=$	Not equal to	$3<=4$	true (1)
$>$	Greater than	$3==4$	false (0)
$>=$	Greater than or equal to	$3>4$	false (0)
$<$	Less than	$4<=4$	true (1)
$<=$	Less than or equal to	$' \mathrm{~A}^{\prime}<' \mathrm{~B} '$	true (1)

Logical Data Type

- Logical Operators

> l1 op l2

Operator	Operation
$\&$	Logical AND
$\& \&$	Logical AND with shortcut evaluation
I	Logical OR
II	Logical OR with shortcut evaluation
xor	Logical Exclusive OR
\sim	Logical NOT

Returns ones where either A or B is
True (nonzero); returns False (zero) where both A and B are False (zero) or both are True (nonzero).

Logical Data Type

- Logical Operators
\diamond Logical AND
\diamond Logical OR
\diamond Logical Negation (NOT).

Binary Operators: Logical AND

- Consider two logic variables A and B and the result is C.
- C is true if and only if A is true AND B is true

In order for current to flow, both switches must be closed

$$
\mathrm{C}=\mathrm{A} \cdot \mathrm{~B}
$$

Inputs		Output
A	B	C=A \&\& B
0	0	0
0	1	0
1	0	0
1	1	1

Binary Operators: Logical AND

- (A AND B) yields true only if both A and B are true.

Example: Adult blood pressure is considered normal at 120/80 where the first number is the systolic pressure and the second is the diastolic pressure.
$\mathrm{A}=$ True \quad if Systolic Pressure $=120$
$B=$ True \quad if Diastolic Pressure $=80$
$\mathrm{C}=$ True \Rightarrow Blood pressure is normal
C = A \&\& B
Diastolic Pressure

Binary Operators: Logical AND

- Example-2: Google Search

operator:parameter

filetype:pdf will search for pdf only.
site:edu will search all site in edu top domain.
suez canal university filetype:pdf AND site:edu will search for pdf and all site in edu top domain.

Binary Operators: Logical OR

- Consider two logic variables A and B and the result is C.
- C is true if A is true OR B is true

Current flows if either switch is closed

$$
\mathrm{C}=\mathrm{A} \| \mathrm{B}
$$

Inputs		Output	
A	B	$\mathrm{C}=\mathrm{A} \\| \mathrm{B}$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Binary Operators: Logical OR

- (A OR B) yields true only if either A or B, or both are true.

Example: Adult blood pressure is considered normal at 120/80 where the first number is the systolic pressure and the second is the diastolic pressure.

$$
\begin{aligned}
& A=\text { True } \quad \text { if Systolic Pressure } \neq 120 \\
& B=\text { True } \quad \text { if Diastolic Pressure } \neq 80 \\
& C=\text { True } \Rightarrow \text { Blood pressure is abnormal } \\
& C=A \| B
\end{aligned}
$$

Diastolic Pressure

Binary Operators: Logical OR

- Example-2: Google Search

Esuez canal university filetype:pdf or siteedu - Google Search - Windows Internet Explorer				
File Edit	dit View Favorites Tools	Help		
\% suez canal university filetype:pdf or site:edu - Google...		te:edu - Google...		合 -
Web	Images Videos Maps	News Shopping Gmail more		
	An	suez canal university filetype:pdf OR site:edu	\times	Search
		About 159,000 results (0.15 seconds)		nced search
	Everything Images Videos News Shopping More All results Wonder wheel Timeline More search tools	Global Virtual University \| Suez Canal University Q ... Suez Canal University - University of Pretoria - University of Ruhuna - University of Zimbabwe - Home - About GVU - Partners. Suez Canal University ... gvu.unu.edu/partners.cfm?pageid=1017\&orgid=1013 - Cached Report of First Visit of Faculty from Suez Canal University Dean, College of Education Associate Professor. Suez Canal University Counseling Psychology. Ismailia, Egypt Suez Canal University. Ismailia, Egypt ... education.gsu.edu/scu-gsu/Report\%20of\%20SCU\%20visit-1.htm - Cached Suez Canal University - Academia.edu Q Academia.edu helps academics follow the latest research. scuegypt.academia.edu/ - Cached [PDF Society of Exploration Geophysicists - Suez Canal University File Format: PDF/Adobe Acrobat - Quick View Society of Exploration Geophysicists - Suez Canal University. Page 40 Preparation of development plan for the chapter and for members. ... www.segscu.org/../SEGSCU\%20Committees\%20job\%20description.pdf [PDFI I graduated in Medical School, Suez Canal University, Ismailia ... Q File Format: PDF/Adobe Acrobat - Quick View I am currently a Professor of Urology at Suez Canal University, Ismailia, Egypt and working as a consultant in Saudi Arabia. ... www.messm.org/site/uploads/Nomination\%20CV.pdf [PDF] Raafat Hassan Abd El-Wahab Department of Botany, Suez Canal ... File Format: PDF/Adobe Acrobat - Quick View CONSERVATION OF NATURAL RESOURCES, SUEZ CANAL UNIVERSITY, EGYPT, 9-10 3 - WORKSHOP OF BIOSTATISTICS, FACULTY OF SCIENCE, SUEZ CANAL UNIVERSITY, ... eses-catrina.com/files/RAAFAT_CV June08.pdf - Similar		

operator:parameter

filetype:pdf will search for pdf only.

site:edu will search all site in edu top domain.

suez canal university

 filetype:pdf OR site:edu will search for pdf or all site in edu top domain.
Binary Operators: Logical Negation

- NOT is denoted by a bar ()) before the variable.
- Consider a logic variable A and the result is C .
- C is true if A is false and vice versa.
- $\mathrm{C}=\sim \mathrm{A}$

Truth Table

Input	Output
A	$\mathrm{C}=\sim \mathrm{A}$
0	1
1	0

Binary Operators: Logical Negation

- Inverts its operand.

Example: Adult blood pressure is considered normal at 120/80 where the first number is the systolic pressure and the second is the diastolic pressure.
$\mathrm{A}=$ True \quad if Systolic Pressure $=120$
$\sim \mathrm{A}=$ False $\quad \Rightarrow$ Systolic Pressure $\neq 120$
$B=$ True \quad if Diastolic Pressure $=80$
$\sim B=$ False $\quad \Rightarrow$ Diastolic Pressure $\neq 80$

Diastolic Pressure

Logical Data Type

- Boolean Expressions:

$$
\begin{aligned}
& C=A \& \& B \text { is read "C is equal to } A \text { and } B . " \\
& z=x \| y \text { is read " } z \text { is equal to } x \text { OR } y . " \\
& D=\sim A \text { is read " } D \text { is equal to NOT A." }
\end{aligned}
$$

- Using the basic operations, we can form more complex expressions:

$$
\mathrm{Z}=(\mathrm{A} \& \& \mathrm{~B} \| \sim \mathrm{C}) \| \mathrm{X} \& \& \mathrm{Y}
$$

If $\mathrm{A}=$ True, $\mathrm{B}=$ False, $\mathrm{C}=$ True, $\mathrm{X}=$ True, $\mathrm{Y}=$ False.
Z=(True \&\& False ||True) || False \&\& False
=(False || True) || False=True || False=True

Logical Data Type

- Example

Assuming that $\mathrm{x}=-10, \mathrm{y}=50$, and $\mathrm{z}=60$ determine the value of the following Boolean expression:
$(0<x<50)$ AND $(50<y<100) O R([y-x]=z)$

$$
\begin{aligned}
& (0<\mathrm{x}<50) \Rightarrow(\mathrm{o}<[-10]<50) \Rightarrow \text { FALSE } \\
& (50<\mathrm{y}<100) \Rightarrow(50<50<100) \Rightarrow \text { FALSE } \\
& ([50-(-10)]=60) \Rightarrow(60=60) \Rightarrow \text { TRUE } \\
& \text { FALSE AND FALSE } \Rightarrow \text { FALSE }
\end{aligned}
$$

$$
\text { FALSE OR TRUE } \Rightarrow \text { TRUE }
$$

Logical Data Type

- Operator Precedence
\diamond NOT has the highest precedence, followed by AND, and then OR.
\diamond All higher-precedence operators are evaluated before any lower-precedence operators.
\diamond Operators at the same precedence are evaluated left-to-right.

Logical Data Type

- Operator Precedence
\diamond Parentheses can be used to override operator precedence.

$$
\mathrm{Z}=(\mathrm{A} \& \& \mathrm{~B} \| \mathrm{C}) \| \sim \mathrm{X} \& \& \mathrm{Y}
$$

Logical Data Type

- Operator Precedence

1. All arithmetic operators are evaluated first.
2. All relational operators ($==, \sim=,>,>=,<,<=$) are evaluated, working from left to right.
3. All \sim operators are evaluated.
4. All \& and \&\& operators are evaluated, working from left to right.
5. All | , | | , and xor operators are evaluated, working from left to right.

Logical Data Type

- Operator Precedence: Example

Assume that the following variables are initialized with the values shown, and calculate the result of the specified expressions:
valuel = true
value $2=$ false
value $3=1$
value $4=-10$
value $5=0$
va1ue6 = [1 2; o 11

Logical Data Type

- Operator Precedence: Example

	Expression	Result	Comment	valuel = true
(a)	\sim value1	false		value $2=$ false
(b)	\sim value3	false	The number 1 is converted to true before operation is applied.	$\text { value } 3=1$
(c)	value1 \| value2	true		value $4=-10$
(d)	value1 \& value2	false		
(e)	value4 \& value5	false	-10 is converted to true and 0 is converted to false before the operation is applied.	$\text { va1ue6 = [} 122 ; 01]$
(f)	\sim (value 4 \& value5)	true	-10 is converted to true and 0 is converted to false before the operation is applied.	
(g)	value1 + value4	-9	value 1 is converted to the number 1 before the addition is performed.	
(h)	valuel + (value4)	1	The logical value 1 is converted to the number 1 before the addition is performed. The number value 4 is converted to true before the NOT is performed. Then \sim value4 is evaluated to be false. This false value is converted to 0 before the addition, so the final result is $1+0=1$.	
(i)	value 3 \&\& value 6	Illegal	The $\& \&$ operator must be used with scalar operands.	
(j)	value3 \& value6	$\left[\begin{array}{cc} \text { true } & \text { true } \\ \text { false } & \text { true } \end{array}\right]$	AND between a scalar and an array operand.	

Logical Data Type

- Logical Functions

Function	Purpose
ischar(a)	Returns true if a is a character array and false otherwise.
isempty(a)	Returns true if a is an empty array and false otherwise.
isinf(a)	Returns true if the value of a is infinite (Inf) and false otherwise.
isnan(a)	Returns true if the value of a is NAN (not a number) and false otherwise.
isnumeric(a)	Returns true if a is a numeric array and false otherwise.
logical	Converts numerical values to logical values: if a value is non- zero, it is converted to true. If it is zero, it is converted to false.

Logical Data Type

- Exercise

Assume that a, b,c, and d are defined, and evaluate the following expressions:

$$
\begin{array}{ll}
a=20 ; & b=-2 ; \\
C=0 ; & d=1 ; \\
\text { 1. } a>b \& \& c>d & \\
\text { 2. } d \| b>a & \\
\text { 3. } \quad a+b^{\wedge} 2>a^{*} c &
\end{array}
$$

Outline

- Conditional Algorithms
- Logical Data Type
- Branching Constructs
- Exercises

Branching Constructs

- Branches are MATLAB statements that permit us to select and execute specific sections of code (called blocks) while skipping other sections of code.
- They are variations of the if construct, the switch construct, and the try/catch construct.

MATLAB Branching Constructs

if-construct
switch-construct
try/catch-construct

Branching Constructs

- The if Construct

Branching Constructs

- The if Construct: Example-o

What will the following MATLAB code print?

$$
\begin{aligned}
& \mathrm{a}=10 ; \\
& \text { if } \mathrm{a} \sim=0
\end{aligned}
$$

disp('a is not equal to o')
end

Solution

a is not equal to o

Branching Constructs

- The if Construct: Example-o

What will the following MATLAB code print?

$$
\begin{aligned}
& a=10 \\
& \text { if } a>0
\end{aligned}
$$

disp('a is positive')
else
disp('a is not positive')
end

Solution

a is positive

Branching Constructs

- The if Construct: Example-o

What will the following MATLAB code print?

```
a=10;
if (a>o)
```

disp('a is positive')
else
disp('a is not positive')
end

Solution

The parentheses around the relational expression a > O will not change its validity, so this code will print ' a is positive'.

Branching Constructs

- The if Construct: Example-o

What will the following MATLAB code print?

$$
\begin{aligned}
& \mathrm{a}=5 ; \\
& \mathrm{b}=3 ; \\
& \mathrm{c}=2 ; \\
& \text { if } \mathrm{a}<\mathrm{b}^{*} \mathrm{c}
\end{aligned}
$$

disp('Hello world')
else
disp('Goodbye world') end

Solution

$\mathrm{b}^{*} \mathrm{c}$ gives a value of 6 , and 5
<6, so this code will print
'Hello world'.

Branching Constructs

- The if Construct: Example-o

What will the following MATLAB code print?

$$
\begin{aligned}
& \mathrm{a}=5 ; \\
& \mathrm{b}=3 ; \\
& \mathrm{c}=2 ; \\
& \text { if }(\mathrm{a}<\mathrm{b})^{*} \mathrm{c} \\
& \quad \text { disp('Hello world') }
\end{aligned}
$$

else
disp('Goodbye world')

end

Solution

The parentheses in this expression change its meaning completely. First, a < b is evaluated, and since it is false for the given values of a and b, it evaluates to zero. The zero is than multiplied by c, giving a value of zero which is interpreted by MATLAB as false. So this code prints 'Goodbye world'.

Branching Constructs

- The if Construct: Example-o

What will the following MATLAB code print?

$$
\begin{aligned}
& \text { p1 = 3.14; } \\
& \text { p2 = } 3.14159 ; \\
& \text { if p1 = }=\text { p2 }
\end{aligned}
$$

disp('p1 and p2 are equal')
else
disp('p1 and p2 are not equal')

end

Solution

p1 and p2 are not equal

Branching Constructs

- The if Construct: Example-o

What will the following MATLAB code print?

$$
\begin{aligned}
& a=5 \\
& b=10 \\
& \text { if } a=b
\end{aligned}
$$

disp('a and b are equal')

else

disp('a and b are not equal') end

Solution

This code will generate an error message, since $\mathrm{a}=\mathrm{b}$ assigns the value of b to a. To check if a and b are equal, use $\mathrm{a}==\mathrm{b}$

Branching Constructs

- The if Construct: Example-o

For what values of the variable a will the following MATLAB code print 'Hello world'?

$$
\text { if } \sim \mathrm{a}==\mathrm{o}
$$

disp('Hello world')
else
disp('Goodbye world')
end

Solution

Any value that is not zero.

Branching Constructs

- The if Construct: Example-o

For what values of the variable a will the following MATLAB code print 'Hello world'?
if $\mathrm{a}<7| | \mathrm{a}\rangle=3$
disp('Hello world')
else
disp('Goodbye world')
end

Solution

Every value of a will print 'Hello world'.

Branching Constructs

- The if Construct: Example-o

Write an if statement that will print 'a is very close to zero' if the value of the variable a is between -0.01 and 0.01.
if $\mathrm{a}>=-0.01 \& \& \mathrm{a}<=0.01$
disp('a is very close to zero') end

Branching Constructs

- The if Construct: Example-1

Write an algorithm in pseudo-code to evaluate a function $f(x, y)$ for any two user-specified values x and y. The function $f(x, y)$ is defined as follows:
$f(x, y)=\left\{\begin{array}{cc}x+y & x \geq 0 \text { and } y \geq 0 \\ x+y^{2} & x \geq 0 \text { and } y<0 \\ x^{2}+y & x<0 \text { and } y \geq 0 \\ x^{2}+y^{2} & x<0 \text { and } y<0\end{array}\right.$
Implement this algorithm using MATLAB.

1. Prompting for input of x and y;
2. Format the display of the computed $f(x, y)$;

Branching Constructs

- The if Construct: Example-1

Inputs: x, y
Output: $f(x, y) \Rightarrow$ fun
Expression:
fun $=\left\{\begin{array}{cc}x+y & x \geq 0 \text { and } y \geq 0 \\ x+y^{2} & x \geq 0 \text { and } y<0 \\ x^{2}+y & x<0 \text { and } y \geq 0 \\ x^{2}+y^{2} & x<0 \text { and } y<0\end{array}\right.$

Branching Constructs

- The if Construct: Example-1

Algorithm in Pseudo-code

BEGIN

get x and y
if $x \geq 0$ and $y \geq 0$ then
set fun to $x+y$
elseif $\mathrm{x} \geq 0$ and $\mathrm{y}<0$ then set fun to $x+y^{2}$
elseif $x<0$ and $y \geq 0$ then

set fun to $x^{2}+y$
elseif $x<0$ and $y<o$ then
set fun to $x^{2}+y^{2}$
endif
print fun
END

Branching Constructs

- The if Construct: Example-1

```
*Script file: funxy.m
%
* Purpose:
* This program solves the function f(x,y) for a
* user-specified }x\mathrm{ and }Y\mathrm{ , where f(x,y) is defined as:
% f(x,y)=x+y x>=0 and y>=0
* f(x,y)=x+y^2 x>=0 and }\overline{y<0
* f(x,y)=x^2+y x<0 and y>=0
* f(x,y)=\mp@subsup{x}{}{\wedge}+\mp@subsup{y}{}{\wedge}\quadx<0 and y<0
%
*Define variables:
% x: First independent variable
% Y: Second independent variable
* fun: Resulting function
%Prompt the user for the values of x and y
x=input('Enter the x coefficient:');
y=input('Enter the y coefficient:');
*Calculate the function f(x,y) based upon the signs of }x\mathrm{ and }
if x>=0 && प >=0
    fun=x+y;
elseif x >= 0&& y<0
    fun=x+y^2;
elseif x < 0 && y >= 0
    fun=x^2+y;
else *x< 0 and y<0
    fun=x^2+\mp@subsup{y}{}{\wedge}2;
end
*Write the results
display(['The value of the function is ' num2str(fun)])
```


\%Record of revisions:

\%Date	Programmer	Description of change $\%=====$ $\%======$
$\% 01 / 03 / 2004$	S. Chapman	Orignial Code

```
>>
>> funxy
Enter the x coefficient:2
Enter the y coefficient:3
The value of the function is 5
>> funxy
Enter the x coefficient:2
Enter the y coefficient:-3
The value of the function is 11
>> funxy
Enter the x coefficient:-2
Enter the y coefficient:3
The value of the function is 7
>> funxy
Enter the x coefficient:-2
Enter the y coefficient:-3
The value of the function is 13
```


Branching Constructs

- The if Construct: Example-2

Write an algorithm in pseudo-code that outputs the grade of the student according to the following rules:

- Grade "A" if grade>95
- Grade "B" if $86<$ grade ≤ 95
- Grade "C" if $76<$ grade ≤ 86
- Grade "D" if $66<$ grade ≤ 76
- Grade "F" if grade ≤ 66

Write a Matlab program to implement the proposed algorithm.

Branching Constructs

- The if Construct: Example-2

Inputs: numerical grade
Output: letter grade

BEGIN

get grade
if (grade>95) then print A
else if (grade>86) then print B
else if (grade>76) then print C
else if (grade>66) then print D
else
print F
endif
END

Branching Constructs

- The if Construct: Example-2

*Script file: letter_grade.m
\%

* Purpose:
* This program reads in a numerical grade and assigns
* a letter grade to it according to the following table:
* Grade " ${ }^{\text {" " }}$ if grade>95
* Grade "B" if $86<$ grade $<=95$
* Grade "C" if $76<$ grade $<=86$
* Grade "D" if $66<$ grade $<=76$
\% Grade " F " if grade <= 66
*Record of revisions:

$*$ Date	Programmer	Description of change
$\%=====$	$==========$	$=====================$
$* 16 / 05 / 2011$	Alaa Khamis	Orignial Code

$\%$
\% Define variables:

* grade: Numerical Grade
\%Prompt the user for the numericla grade grade=input('Enter the numerical grade:');
*Print the corresponding letter grade
if grade > 95.0
display('The garde is A.');
elseif grade > 86.0
display('The garde is B.');
elseif grade > 76.0
display('The garde is C.'):
elseif grade > 66.0
display('The garde is D.');
else *grade <= 66
display('The garde is F.');
end

```
Enter the numerical grade:55
The garde is F.
>> letter_grade
Enter the numerical grade:99
The garde is A.
>> letter_grade
Enter the numerical grade:77
The garde is C.
>> letter_grade
Enter the numerical grade:89
The garde is B.
>> letter_grade
Enter the numerical grade:70
The garde is D.
```


Branching Constructs

- The if Construct: Example-3

Both color monitor and your eyes use just three colors-red, blue and green- to create all other colors. In particular, yellow is made by combining red and green, magenta (a shade of purple) by combing red and blue, and cyan by combing green and blue. Write a Matlab program that asks the user which of the three colors- yellow, magenta, or cyan- to break down into its two components.
If the user enters the letter ' Y ' (or ' y ') for "yellow", the following message is displayed:

Yellow is made by combining red and green.

Similarly, if the user enters the letter ' M ' (or ' m ') for "magenta", the following message is displayed:

Magenta is made by combining red and blue.
and if the letter ' C ' (or ' c ') for "cyan" is entered, the following message is displayed:
Cyan is made by combining green and blue.
Allow either uppercase or lower case, but if anything other than ' Y ', ' y , ' M ', ' m ', ' C ', or ' c ' is entered, print an error message.

Branching Constructs

- The if Construct: Example-3

Both color monitor and your eyes use just three colors-red, blue and green- to create all other colors. In particular, yellow is made by combining red and green, magenta (a shade of purple) by combing red and blue, and cyan by combing green and blue. Write a Matlab program that asks the user which of the three colors- yellow, magenta, or cyan- to break down into its two components.
If the user enters the letter ' Y ' (or ' y ') for "yellow", the following message is displayed:
Yellow is made by combining red and green. Similarly, if the user enters the letter ' M ' (or ' m ') for "magenta", the following message is displayed:
Magenta is made by combining red and blue. and if the letter 'C' (or ' c ') for "cyan" is entered,
 the following message is displayed:
Cyan is made by combining green and blue.
Allow either uppercase or lower case, but if anything other than ' Y ', ' y , ' ' M ', ' m ', ' C ', or ' c ' is entered, print an error message.

Branching Constructs

- The if Construct: Example-3

Inputs:
color_letter
Output:
message

BEGIN

get color_letter
if (color_letter $=Y$ or y) then print "Yellow is made by combining red and green" else if (color_letter $=\mathrm{M}$ or m) then print "Magenta is made by combining red and blue" else if (color_letter $=\mathrm{C}$ or c) then print "Cyan is made by combining green and blue" else print "ERROR!" endif
endif
endif
END

Branching Constructs

- The if Construct: Example-3

```
Script file: color.m
*
Purpose:
* This program asks the user which of the three colors- yellow,
* magenta, or cyan- to break down into its two components.
* Yellow is made by combining red and green.
* Magenta is made by combining red and blue.
* Cyan is made by combining green and blue.
*Record of revisions:
*Date Programmer Description of change
%===== =========== =======================
*16/05/2011 Alaa Khamis Orignial Code
*
*Define variables:
* color_letter: Color to be decomposed into primary components
*Prompt the user for the color (read it as a string)
color_letter=input('Enter the color:', 's');
*Calculate the function f(x,y) based upon the signs of }x\mathrm{ and }
if color_letter== 'Y' || color_letter== 'Y'
* strcmp can alsio be used to compare stings as follows
* if strcmp(color_letter, 'Y') || strcmp(color_letter, 'Y')
    display('Yellow is made by combining red and green.');
elseif color_letter=='M' || color_letter=='m'
    display('Magenta is made by combining red and blue.');
elseif color_letter=='C' || color_letter=='c'
    display('Cyan is made by combining green and blue.');
else
    display('Invalid color.');
end
```

```
>>
>> color
Enter the color:y
Yellow is made by combining red and green.
>> color
Enter the color:Y
Yellow is made by combining red and green.
>> color
Enter the color:m
Magenta is made by combining red and blue.
>> color
Enter the color:M
Magenta is made by combining red and blue.
>> color
Enter the color:c
Cyan is made by combining green and blue.
>> color
Enter the color:C
Cyan is made by combining green and blue.
>> color
Enter the color:b
Invalid color.
>>
```


Branching Constructs

- The switch Construct

```
switch (switch_expr)
case case_expr_1
Statement 1\} Block 1
case case_expr_2
    Statement }
                            Block 2
otherwise
    Statement 1 _...}}{\mathrm{ Block 3
end
```


Branching Constructs

- The switch Construct: Example-1

Inputs:
color_letter
Output: message

BEGIN

get color_letter
switch (color_letter)
case (Y or y) print "Yellow is made by combining red and green" case (M or m)
print "Magenta is made by combining red and blue" case (C or c)
print "Cyan is made by combining green and blue" otherwise
print "ERROR!"
End
END

Branching Constructs

- The switch Construct: Example-1

```
* Script file: color2.m
*
% Purpose:
* This program asks the user which of the three colors- yellow,
* magenta, or cyan- to break down into its two components.
* Yellow is made by combining red and green.
* Magenta is made by combining red and blue.
* Cyan is made by combining green and blue.
% In this program, we use switch construct.
*Record of revisions:
\begin{tabular}{lll}
\(\%\) Date & Programmer & Description of change \\
\(\%=====\) & \(==========\) & \(=====================\) \\
\(\% 16 / 05 / 2011\) & Alaa Khamis & Orignial Code
\end{tabular}
%
*Define variables:
* color_letter: Color to be decomposed into primary components
*Prompt the user for the color (read it as a string)
color_letter=input('Enter the color:', 's');
*Calculate the function f(x,y) based upon the signs of }x\mathrm{ and }
switch(color_letter)
        case {'Y', 'Y'}
            display('Yellow is made by combining red and green.');
        case {'M', 'm'}
            display('Magenta is made by combining red and blue.');
        case {'C', 'c'}
            display('Cyan is made by combining green and blue.');
        otherwise
            display('Invalid color.');
end
```

```
>>
```

>>
>> color
>> color
Enter the color:y
Enter the color:y
Yellow is made by combining red and green.
Yellow is made by combining red and green.
>> color
>> color
Enter the color:Y
Enter the color:Y
Yellow is made by combining red and green.
Yellow is made by combining red and green.
>> color
>> color
Enter the color:m
Enter the color:m
Magenta is made by combining red and blue.
Magenta is made by combining red and blue.
>> color
>> color
Enter the color:M
Enter the color:M
Magenta is made by combining red and blue.
Magenta is made by combining red and blue.
>> color
>> color
Enter the color:c
Enter the color:c
Cyan is made by combining green and blue.
Cyan is made by combining green and blue.
>> color
>> color
Enter the color:C
Enter the color:C
Cyan is made by combining green and blue.
Cyan is made by combining green and blue.
>> color
>> color
Enter the color:b
Enter the color:b
Invalid color.
Invalid color.
>>

```
>>
```


Branching Constructs

- The try/catch Construct

The try/catch construct is a special form branching construct designed to trap errors.

Branching Constructs

- The try/catch Construct: Example-1

This program creates an array and asks the user to specify an element of the array to display.

The user will supply a subscript number, and the program displays the corresponding array element.

The statements in the try block will always be executed in this program, while the statements in the catch block will be executed only if an error occurs in the try block.

Branching Constructs

- The try/catch Construct: Example-1

This program creates an array and asks the user to specify an element of the array to display.

The user will supply a subscript number, and the program displays the corresponding array element.

The statements in the try block will always be executed in this program, while the statements in the catch block will be executed only if an error occurs in the try block.

Branching Constructs

- The try/catch Construct: Example-1

```
* Script file: try_catch.m
*
* Purpose:
* Show how try/catch construct works,
*Initialize array
a=[[\begin{array}{llll}{1}&{-3}&{2}&{5}\end{array}]
try
    * Try to display an element
    index=input('Enter subscript of element to display: '';
    disp(['a(' int2str(index) ') = ' num2str(a(index))]);
catch
    * If we get here an error occured
    disp(['Illegal subscript: ' int2str(index)]);
end
```

```
>> try_catch
a =
Enter subscript of element to display: 3
a(3) = 2
>> try_catch
a =
    1 
Enter subscript of element to display: 8
Illegal subscript: 8
>>
```


Outline

- Conditional Algorithms
- Logical Data Type
- Branching Constructs
- Exercises

Exercises

- Exercise-1

Write an algorithm in pseudo-code that inputs two numbers x and y, and computes and displays the value x / y if the value of y is not zero.

If y does have the value 0 , then display the message "Unable to perform division". Implement the proposed algorithm using Matlab.

Exercises

- Exercise-2

Adult blood pressure is considered normal at 120/80 where the first number is the systolic pressure and the second is the diastolic pressure. Write a Matlab program that gets systolic and diastolic pressures as inputs and decides whether the pressure is normal or not.

Exercises

- Exercise-3

Write an algorithm in pseudo-code that gets the ambient temperature as input and decide whether the weather is cold, hot or nice based on the following criteria:

Temperature > $30 \Rightarrow$ print "Hot weather"
Temperature $<18 \Rightarrow$ print "Cold weather"
Otherwise $\quad \Rightarrow$ print "Nice weather".
Write a Matlab program to implement this algorithm.

Exercises

- Exercise-4

Write an algorithm in pseudo-code that gets the values of starting account balance, annually compounded rate and annual service charge. The algorithm includes the annual service charge only if the starting account balance at the beginning of the year is less than 1,000 pounds. If it is greater than or equal to 1,000 pounds, then no annual service charge is included. The algorithm should compute and display your balance after one year. Write a Matlab program that calculates the final balance.

Exercises

- Exercise-5

Australia is a great place to live, but it is also a land of high taxes. In 2002, individual citizens and residents of Australia paid the following income taxes:

Taxable Income (in A\$)	Tax on this income
o-6,000	None
$6,001-20,000$	17 cents for each $\$ 1$ over $\$ 6,000$
$20,001-50,000$	$\$ 2,380$ plus 30 cents for each $\$ 1$ over $\$ 20,000$
$50,001-60,000$	$\$ 11,380$ plus 42 cents for each $\$ 1$ over $\$ 50,000$
Over 60,000	$\$ 15,380$ plus 47 cents for each $\$ 1$ over $\$ 60,000$

In addition, a flat 1.5% Medicare levy is charged on all income. Write a program to calculate how much income tax a person will owe based on this information.

Exercises

- Exercise-5 (cont'd)

The program should accept a total income figure from the user and calculate the income tax, Medicare levy, and total tax payable by the individual.

